Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
ASAIO J ; 2023 May 08.
Article in English | MEDLINE | ID: covidwho-2316918

ABSTRACT

Interhospital transport of acute respiratory distress syndrome (ARDS) patients bears transport-associated risks. It is unknown how interhospital extracorporeal membrane oxygenation (ECMO) transfer of COVID-19 patients by mobile ECMO units affects ARDS mortality. We compared the outcome of 94 COVID-19 patients cannulated in primary care hospitals and retrieved by mobile ECMO-teams to that of 84 patients cannulated at five German ECMO centers. Patients were recruited from March 2020 to November 2021. Twenty-six transports were airborne, 68 were land-based. Age, sex, body-mass-index, Simplified Acute Physiology Score (SAPS) II, days invasively ventilated, and P/F-Ratio before ECMO initiation were similar in both groups. Counting only regional transports (≤250 km), mean transport distance was 139.5 km ± 17.7 km for helicopter (duration 52.5 ± 10.6 minutes) and 69.8 km ± 44.1 km for ambulance or mobile intensive care unit (duration 57.6 ± 29.4 minutes). Overall time of vvECMO support (20.4 ± 15.2 ECMO days for transported patients vs. 21.0 ± 20.5 for control, p = 0.83) and days invasively ventilated (27.9 ± 18.1 days vs. 32.6 ± 25.1 days, p = 0.16) were similar. Overall mortality did not differ between transported patients and controls (57/94 [61%] vs. 51/83 [61%], p = 0.43). COVID-19 patients cannulated and retrieved by mobile ECMO-teams have no excess risk compared with patients receiving vvECMO at experienced ECMO centers. Patients with COVID-19-associated ARDS, limited comorbidities, and no contraindication for ECMO should be referred early to local ECMO centers.

2.
J Clin Med ; 11(21)2022 Oct 22.
Article in English | MEDLINE | ID: covidwho-2082052

ABSTRACT

Background: There is ongoing debate whether lung physiology of COVID-19-associated acute respiratory distress syndrome (ARDS) differs from ARDS of other origin. Objective: The aim of this study was to analyze and compare how critically ill patients with COVID-19 and Influenza A or B were ventilated in our tertiary care center with or without extracorporeal membrane oxygenation (ECMO). We ask if acute lung failure due to COVID-19 requires different intensive care management compared to conventional ARDS. Methods: 25 patients with COVID-19-associated ARDS were matched to a cohort of 25 Influenza patients treated in our center from 2011 to 2021. Subgroup analysis addressed whether patients on ECMO received different mechanical ventilation than patients without extracorporeal support. Results: Compared to Influenza-associated ARDS, COVID-19 patients had higher ventilatory system compliance (40.7 mL/mbar [31.8-46.7 mL/mbar] vs. 31.4 mL/mbar [13.7-42.8 mL/mbar], p = 0.198), higher ventilatory ratio (1.57 [1.31-1.84] vs. 0.91 [0.44-1.38], p = 0.006) and higher minute ventilation at the time of intubation (mean minute ventilation 10.7 L/min [7.2-12.2 L/min] for COVID-19 vs. 6.0 L/min [2.5-10.1 L/min] for Influenza, p = 0.013). There were no measurable differences in P/F ratio, positive end-expiratory pressure (PEEP) and driving pressures (ΔP). Respiratory system compliance deteriorated considerably in COVID-19 patients on ECMO during 2 weeks of mechanical ventilation (Crs, mean decrease over 2 weeks -23.87 mL/mbar ± 32.94 mL/mbar, p = 0.037) but not in ventilated Influenza patients on ECMO and less so in ventilated COVID-19 patients without ECMO. For COVID-19 patients, low driving pressures on ECMO were strongly correlated to a decline in compliance after 2 weeks (Pearson's R 0.80, p = 0.058). Overall mortality was insignificantly lower for COVID-19 patients compared to Influenza patients (40% vs. 48%, p = 0.31). Outcome was insignificantly worse for patients requiring veno-venous ECMO in both groups (50% mortality for COVID-19 on ECMO vs. 27% without ECMO, p = 0.30/56% vs. 34% mortality for Influenza A/B with and without ECMO, p = 0.31). Conclusion: The pathophysiology of early COVID-19-associated ARDS differs from Influenza-associated acute lung failure by sustained respiratory mechanics during the early phase of ventilation. We question whether intubated COVID-19 patients on ECMO benefit from extremely low driving pressures, as this appears to accelerate derecruitment and consecutive loss of ventilatory system compliance.

3.
Int J Infect Dis ; 122: 178-187, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1889494

ABSTRACT

BACKGROUND: Early prognostication of COVID-19 severity will potentially improve patient care. Biomarkers, such as TNF-related apoptosis-inducing ligand (TRAIL), interferon gamma-induced protein 10 (IP-10), and C-reactive protein (CRP), might represent possible tools for point-of-care testing and severity prediction. METHODS: In this prospective cohort study, we analyzed serum levels of TRAIL, IP-10, and CRP in patients with COVID-19, compared them with control subjects, and investigated the association with disease severity. RESULTS: A total of 899 measurements were performed in 132 patients (mean age 64 years, 40.2% females). Among patients with COVID-19, TRAIL levels were lower (49.5 vs 87 pg/ml, P = 0.0142), whereas IP-10 and CRP showed higher levels (667.5 vs 127 pg/ml, P <0.001; 75.3 vs 1.6 mg/l, P <0.001) than healthy controls. TRAIL yielded an inverse correlation with length of hospital and intensive care unit (ICU) stay, Simplified Acute Physiology Score II, and National Early Warning Score, and IP-10 showed a positive correlation with disease severity. Multivariable regression revealed that obesity (adjusted odds ratio [aOR] 5.434, 95% confidence interval [CI] 1.005-29.38), CRP (aOR 1.014, 95% CI 1.002-1.027), and peak IP-10 (aOR 1.001, 95% CI 1.00-1.002) were independent predictors of in-ICU mortality. CONCLUSIONS: We demonstrated a correlation between COVID-19 severity and TRAIL, IP-10, and CRP. Multivariable regression showed a role for IP-10 in predicting unfavourable outcomes, such as in-ICU mortality. TRIAL REGISTRATION: Clinicaltrials.gov, NCT04655521.


Subject(s)
C-Reactive Protein , COVID-19 , C-Reactive Protein/metabolism , COVID-19/diagnosis , Chemokine CXCL10 , Female , Humans , Intensive Care Units , Interferon-gamma , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , TNF-Related Apoptosis-Inducing Ligand
4.
ASAIO J ; 68(8): 1017-1023, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1865005

ABSTRACT

Coronavirus disease 2019 (COVID-19) has drastically increased the number of patients requiring extracorporeal life support. We investigate the efficacy and safety of low-dose recombinant tissue-type plasminogen activator (rtPA) injection into exhausted oxygenators to delay exchange in critically ill COVID-19 patients on veno-venous extracorporeal membrane oxygenation (V-V ECMO). Small doses of rtPA were injected directly into the draining section of a V-V ECMO circuit. We compared transmembrane pressure gradient, pump head efficiency, membrane arterial partial oxygen pressure, and membrane arterial partial carbon dioxide pressure before and after the procedure. Bleeding was compared with a matched control group of 20 COVID-19 patients on V-V ECMO receiving standard anticoagulation. Four patients received 16 oxygenator instillations with rtPA at 5, 10, or 20 mg per dose. Administration of rtPA significantly reduced transmembrane pressure gradient (Δ pm = 54.8 ± 18.1 mmHg before vs . 38.3 ± 13.3 mmHg after, p < 0.001) in a dose-dependent manner (Pearson's R -0.63, p = 0.023), allowing to delay oxygenator exchange, thus reducing the overall number of consumed oxygenators. rtPA increased blood flow efficiency η (1.20 ± 0.28 ml/revolution before vs . 1.24 ± 0.27 ml/r, p = 0.002). Lysis did not affect membrane blood gases or systemic coagulation. Minor bleeding occurred in 2 of 4 patients (50%) receiving oxygenator lysis as well as 19 of 20 control patients (95%). Lysis of ECMO oxygenators effectively delays oxygenator exchange, if exchange is indicated by an increase in transmembrane pressure gradient. Application of lysis did not result in higher bleeding incidences compared with anticoagulated patients on V-V ECMO for COVID-19.


Subject(s)
COVID-19 Drug Treatment , Extracorporeal Membrane Oxygenation , Oxygenators, Membrane , Tissue Plasminogen Activator , Blood Gas Analysis , Extracorporeal Membrane Oxygenation/instrumentation , Extracorporeal Membrane Oxygenation/methods , Humans , Tissue Plasminogen Activator/therapeutic use
5.
Intensive Care Med Exp ; 9(1): 45, 2021 Sep 03.
Article in English | MEDLINE | ID: covidwho-1394470

ABSTRACT

BACKGROUND: Despite numerous advances in the identification of risk factors for the development of severe coronavirus disease 2019 (COVID-19), factors that promote recovery from COVID-19 remain unknown. Natural killer (NK) cells provide innate immune defense against viral infections and are known to be activated during moderate and severe COVID-19. Killer immunoglobulin-like receptors (KIR) mediate NK cell cytotoxicity through recognition of an altered MHC-I expression on infected target cells. However, the influence of KIR genotype on outcome of patients with COVID-19 has not been investigated so far. We retrospectively analyzed the outcome associations of NK cell count and KIR genotype of patients with COVID-19 related severe ARDS treated on our tertiary intensive care unit (ICU) between February and June 2020 and validated our findings in an independent validation cohort of patients with moderate COVID-19 admitted to our tertiary medical center. RESULTS: Median age of all patients in the discovery cohort (n = 16) was 61 years (range 50-71 years). All patients received invasive mechanical ventilation; 11 patients (68%) required extracorporeal membrane oxygenation (ECMO). Patients who recovered from COVID-19 had significantly higher median NK cell counts during the whole observational period compared to patients who died (121 cells/µL, range 16-602 cells/µL vs 81 cells/µL, range 6-227 cells/µL, p-value = 0.01). KIR2DS5 positivity was significantly associated with shorter time to recovery (21.6 ± 2.8 days vs. 44.6 ± 2.2 days, p-value = 0.01). KIR2DS5 positivity was significantly associated with freedom from transfer to ICU (0% vs 9%, p-value = 0.04) in the validation cohort which consisted of 65 patients with moderate COVID-19. CONCLUSION: NK cells and KIR genotype might have an impact on recovery from COVID-19.

6.
Case Rep Pulmonol ; 2021: 5546723, 2021.
Article in English | MEDLINE | ID: covidwho-1255645

ABSTRACT

BACKGROUND: In 2020, a novel coronavirus caused a global pandemic with a clinical picture termed COVID-19, accounting for numerous cases of ARDS. However, there are still other infectious causes of ARDS that should be considered, especially as the majority of these pathogens are specifically treatable. Case Presentation. We present the case of a 36-year-old gentleman who was admitted to the hospital with flu-like symptoms, after completing a half-marathon one week before admission. As infection with SARS-CoV-2 was suspected based on radiologic imaging, the hypoxemic patient was immediately transferred to the ICU, where he developed ARDS. Empiric antimicrobial chemotherapy was initiated, the patient deteriorated further, therapy was changed, and the patient was transferred to a tertiary care ARDS center. As cold agglutinins were present, the hypothesis of an infection with SARS-CoV-2 was then questioned. Bronchoscopic sampling revealed Mycoplasma (M.) pneumoniae. When antimicrobial chemotherapy was adjusted, the patient recovered quickly. CONCLUSION: Usually, M. pneumoniae causes mild disease. When antimicrobial chemotherapy was adjusted, the patient recovered quickly. The case underlines the importance to adhere to established treatment guidelines, scrutinize treatment modalities, and not to forget other potential causes of severe pneumonia or ARDS.

8.
J Intensive Care Med ; 36(6): 655-663, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1119374

ABSTRACT

BACKGROUND: It has been suggested that COVID-19-associated severe respiratory failure (CARDS) might differ from usual acute respiratory distress syndrome (ARDS) due to failing autoregulation of pulmonary vessels and higher shunt. We sought to investigate pulmonary hemodynamics and ventilation properties in patients with CARDS compared to patients with ARDS of pulmonary origin. METHODS: This was a retrospective analysis of prospectively collected data from consecutive adults with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 patients treated in our ICU in 04/2020 and a comparison of the data to matched controls with ARDS due to respiratory infections treated in our ICU from 01/2014 to 08/2019 for whom pulmonary artery catheter data were available. RESULTS: CARDS patients (n = 10) had ventilation characteristics similar to those of ARDS (n = 10) patients. Nevertheless, mechanical power applied by ventilation was significantly higher in CARDS patients (23.4 ± 8.9 J/min) than in ARDS (15.9 ± 4.3 J/min; P < 0.05). COVID-19 patients had similar pulmonary artery pressure but significantly lower pulmonary vascular resistance, as cardiac output was higher in CARDS vs. ARDS patients (P < 0.05). Shunt fraction and dead space were similar in CARDS compared to ARDS (P > 0.05) and were correlated with hypoxemia in both groups. The arteriovenous pCO2 difference (▵pCO2) was elevated (CARDS 5.5 ± 2.8 mmHg vs. ARDS 4.7 ± 1.1 mmHg; P > 0.05), as was the P(v-a)CO2/C(a-v)O2 ratio (CARDS mean 2.2 ± 1.5 vs. ARDS 1.7 ± 0.8; P > 0.05). CONCLUSIONS: Respiratory failure in COVID-19 patients seems to differ only slightly from ARDS regarding ventilation characteristics and pulmonary hemodynamics. Our data indicate microcirculatory dysfunction. More data need to be collected to assure these findings and gain more pathophysiological insights into COVID-19 and respiratory failure.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Cardiac Output/physiology , Respiration, Artificial , Respiratory Insufficiency/physiopathology , Vascular Resistance/physiology , Aged , Aged, 80 and over , COVID-19/therapy , Female , Humans , Male , Middle Aged , Pulmonary Artery , Respiratory Insufficiency/therapy , Respiratory Insufficiency/virology , Retrospective Studies
9.
Artif Organs ; 45(5): 495-505, 2021 May.
Article in English | MEDLINE | ID: covidwho-1085292

ABSTRACT

Extracorporeal life support (ECLS) is a means to support patients with acute respiratory failure. Initially, recommendations to treat severe cases of pandemic coronavirus disease 2019 (COVID-19) with ECLS have been restrained. In the meantime, ECLS has been shown to produce similar outcomes in patients with severe COVID-19 compared to existing data on ARDS mortality. We performed an international email survey to assess how ECLS providers worldwide have previously used ECLS during the treatment of critically ill patients with COVID-19. A questionnaire with 45 questions (covering, e.g., indication, technical aspects, benefit, and reasons for treatment discontinuation), mostly multiple choice, was distributed by email to ECLS centers. The survey was approved by the European branch of the Extracorporeal Life Support Organization (ELSO); 276 ECMO professionals from 98 centers in 30 different countries on four continents reported that they employed ECMO for very severe COVID-19 cases, mostly in veno-venous configuration (87%). The most common reason to establish ECLS was isolated hypoxemic respiratory failure (50%), followed by a combination of hypoxemia and hypercapnia (39%). Only a small fraction of patients required veno-arterial cannulation due to heart failure (3%). Time on ECLS varied between less than 2 and more than 4 weeks. The main reason to discontinue ECLS treatment prior to patient's recovery was lack of clinical improvement (53%), followed by major bleeding, mostly intracranially (13%). Only 4% of respondents reported that triage situations, lack of staff or lack of oxygenators, were responsible for discontinuation of ECLS support. Most ECLS physicians (51%, IQR 30%) agreed that patients with COVID-19-induced ARDS (CARDS) benefitted from ECLS. Overall mortality of COVID-19 patients on ECLS was estimated to be about 55%. ECLS has been utilized successfully during the COVID-19 pandemic to stabilize CARDS patients in hypoxemic or hypercapnic lung failure. Age and multimorbidity limited the use of ECLS. Triage situations were rarely a concern. ECLS providers stated that patients with severe COVID-19 benefitted from ECLS.


Subject(s)
COVID-19/therapy , Extracorporeal Membrane Oxygenation , Practice Patterns, Physicians'/statistics & numerical data , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/therapy , Critical Illness , Humans , Internationality , Respiratory Distress Syndrome/virology , Respiratory Insufficiency/virology , SARS-CoV-2 , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL